FPGAs for bits & giggles

(or, " As much of a hacky guide to how FPGAs work and how
to use them as will fit into 30-60 minutes”)

Matt Evans

Make, Hack, Void

May 30, 2011

30

What is an FPGA?

Definition

Field-Programmable Gate Array

A flexible logic device used in building digital electronic
circuits

A gate array is an array of 'generic’ digital logic that can be
configured into many different designs.

Fixed gate arrays exist: The ZX Spectrum’s "ULA" was an
early example.

Here, field-programmable means it arrives from the factory
'blank’, and the connections between gates are designed &
configured by the designer/user.

You do not actually have to be in a field, but they do work on
farms as well.

30

What is an FPGA? (2)

Ways of building digital electronic circuits include:

m Valves (Hot, unreliable, huge)

m Discrete transistors (Better, but still pretty huge)
m Silicon chips
m Mass-produced discrete logic, e.g. 74xxx-series logic (You'll
need a lot of wire)
m Make your own custom silicon chip (Great! But you'd better
be a millionaire)
m Make your own ULA/Gate Array (You'll still need to make
thousands)

m Buy a programmable mass-produced chip, and customise it
(Cheap and good!)

30

2011-05-30

What is an FPGA? (2)

Ways of buiding digial

FPGAs for bits & giggles ot

LWhat is an FPGA? (2)

Custom logic can solve probs microcontrollers can’t; you can't use a
microcontroller to bit-bang a PCl bus.Custom circuits tend to be faster
than general circuits programmed to perform tasks.Can design custom
peripherals to interface to whatever you like, process whatever you like.
BCD :-)

Programmable Logic Devices (PLDs)

m Mass-produced (.". cheap) chips designed to be
'soft-configured’ by the designer.

m Programmable = configurable logic functions, not

software-driven

Device
PAL/PLA/GAL
CPLD

FPGA

Era
1970s-1990s
1980s-
1980s-

Capacity
Low
Medium
High

Cost
Low
Low

Medium

Volatile
X
X

Mostly v/

m Smaller PLDs often used for glue logic

m Larger PLDs often used for core datapath logic

5/30

Why use an FPGA?

As a low-to-medium volume replacement for designing an ASIC:

m Chip manufacture is v. expensive

m VLSI design tools are v. expensive too! (e.g. $100K per
person per year)

m Not worth it unless you ship a million!
m Xilinx/Altera/Lattice/etc. make FPGAs in high volumes

m FPGA unit cost .. lower than ASIC for small to medium
volumes

m FPGA design tools free (beer) or cheap (ish $3K)

6/30

Why else?

Their reprogrammability opens up new uses!

m Excellent for prototyping future products (e.g.
ARM/IBM/Intel prototype new CPUs on FPGAs)

m FPGAs in the actual product

m Media equipment — new firmware can implement new video

processing/smoothing/scaling algorithms

m Fixing bugs in products

m Field upgrades/added features

m Reconfigurable computing (Hot research topic!)
m Fun and retrocomputing:

m Open Graphics Project (Open video card)

m Minimig (C= Amiga recreation)

m fpgaarcade.com (Retro arcade machines)

B Opencores.org

~

30

Some example uses for FPGAs

m SGI Imagesync PCl card (Low requirements, lowish volume)

m My oscilloscope (First production run, not worth making an
ASIC — yet)

m CERN'’s LHC detector/acquisition circuitry
m Jodrell Bank radio telescope

m SGl Altix RASC (Supercomputing with algorithm-in-FPGA
accelerator)

m Crypto cruncher systems (Parallel brute-force work)

m Network switching (Reconfigure protocol support)

2011-05-30

Some example uses for FPGAS

FPGAs for bits & giggles

LSome example uses for FPGAs

1. SGI card: Low volume, low requirements, simple FPGA is cheap

2. LHC detectors: Hundreds of them, lowish-volume, massive parallel
DSP

3. Jodrell Bank has custom DSP /receiver circuitry. Very low-volume...
Maybe other telescopes to, too.

4. SGI RASC: FPGA brick; an HPC application could move some of
the algorithm into hardware which appeared in the shared-memory
fabric, could stream data through it.

5. Even though absolute perf not as high as real silicon (x00MHz) can
still process massive amounts of data by repeating the circuit 10x,
100x. (parallelism)

6. Low-med volume appliances, sometimes even high-value appliances
(where flexibility outweighs cost), e.g. those requiring
reconfiguration flexibility

How do they work?

Several different vendors but most FPGAs have similar principles of
operation:

m Matrix structure of Configurable Logic Blocks (CLBs)
m Configurable interconnect between them
m Power up 'blank’, configure from flash ROM

Very flexible 1/0 pads (LVTTL, LVDS, PCI, HSTL, gigabit
transceivers)

Dedicated 'primitive’ blocks: Dual-port RAM, multipliers, etc.

Clock distribution networks

Regular delays — Tools can analyse timing

10/30

2011-05-30

FPGAs for bits & giggles

N

How do they work?

vendors but most FPGAS have similar principles of

i Blacks (CLBs)

h ROM
PCl, HSTL, gigabit

LHOW do they work?

This talk is Xilinx-centric! Principles are common though.

CLBs perform the logic functions, contain flip-flops (STORAGE)
Some have internal flash, others external ROM chips, can upload
from host processor too.

Excellent interfacing possibilities; can drive fast buses (e.g. video
panels, PCl) even with modest FPGAs. With more exotic you can
do PCle, multi-gigabit ethernet, etc.

On ASIC you'd make custom blocks; either impossible or v.
inefficient to make with CLBs so vendors usually have dedicated
'primitives’ scattered around. FASTER, SMALLER.

Talk about regular (well-characterised) propagation delays,
setup/hold times on latches; tools will tell you how fast you can run
your design. OR specify constraints.

FPGA chip structure in Lego™

RRRRRRE:

TQTT]T

o] o] [o % o| |o
x| | 2]

—>| CLB CLB CLB CLB CLB >
L L <>[1o]
R | R | ~[10]

> CLB A CLB CLB CLB A CLB >
] ™ <[]
| ™ o]

> CLB CLB CLB CLB CLB (>
L L <~>[10]
N] <[]

Clocks > A CLB CLB CLB A CLB >
L M| <[]

° o] o] |o

12 /30

Xilinx Spartan3E CLB detail

(Stolen from the Spartan3E datasheet)

SHIFTIN

FXINA >~

cout

FXINB

DIG_MUX
I~

-2

ALTDIG L=

YBMUX

N FiMUX (@)

—YB

= Fi

]
‘LHXOFKG

)

Al4:1] D
G-LUT

| WG[4:1] MC15

WS DI

GAND

e

GYMUX

S ey S

DYMUX
D oF—T=>va
FFY
CE
—{ck

SR_REV
22> DIG
772> BYOUT

CES>——

Top Portion

CLK=>—

SR>—

13/30

2011-05-30

Xilinx Spartan3 CLB detail
(Stolen from the Spartan3E datasheet)

FPGAs for bits & giggles ‘ e e

WD

I
Tl
=

LXiIinx Spartan3E CLB detail

w9

. Will cover functions later— LUT = output function of the inputs
LUTs 4-input here, each CLB has 4x4input LUTs, 2 latches

. Contemporary Spartan6/Virtex7 has 6 input LUTs

. Wakes up 'blank’ — “bitstream” configures CLB operation

Xilinx Spartan 3E CLB bird’s eye view

SHIETN

cour

SY5ELS

PNA >
NS >

&
01G_ux

b

(S0

Top Portion

Gommon Lo
; i
DIF_MUX. 1)! X8
<
orear) .
e
= .
- N
e
\:[} x
ovr
- = = Lo
L= e
e
Soom porton
e ——— B
Dbt ard s om
Skt s

Xilinx FPGA features

Over time, more specialised functional blocks have been added:

Family BRAM | DSP | PCle | MemCtrl | Gigabit 10
Spartan X X X X X
Spartan-2E v X X X X
Spartan-3E v v X X X
Virtex-4 v v X X v
Virtex-5 v v v X v
Spartan-6 v v v v v

More new features: ADCs, PowerPC & ARM Cortex CPU
cores/SoCs

16 /30

OK, so how do you do stuff?

1. Find your FPGA hardware (e.g. starter kit)
2. Sketch your design on paper. Do not just start hacking! :-)

3. Describe logic in:
m Verilog
= VHDL
m Schematic
4. Simulate, simulate, simulate, go to step 2
5. Xilinx Webpack ISE used to build 'bitstream’:

m Verilog/VHDL compiled; functions inferred (e.g. adders,
multipliers, RAM)

m ‘UCF’ file maps physical pins to signal names

m Logic Place And Routed, mapped to target device

m Final layout condensed into configuration bitstream

6. Program FPGA in-situ. Finish, rejoice, or go to step 2 :-)

17 /30

Let's make something

Quick example of designing something with:

m Spartan-3 Starter Board

m Verilog

m Xilinx's free Webpack ISE design software (on x86 Linux!)
m lverilog simulator & GTKWave

...and a very short course on digital logic design :-)

This won't be a complete course in Verilog because:

1. There isn't time
2. 1 don’t know all of Verilog :-)

18 /30

MHV201: Combinatorial logic

Class of logic where a boolean function on a set of signals
produces another set of signals.

No storage (latches/flip-flops), only logic gates.

Example: Decode a 4-bit BCD digit (0-9) into 7 segment signals
for an LED display

bit3 ——~ 0
bit2 —
bit1 —— 1

bito — 0

19/30

MHV201: Combinatorial logic

7 segment decoder truth table:

in[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

a

R R RO RO

b

1
1
1
1
1
0
0
1
1
1

C

e L = =R = U=

d

H = O R MHFORMEO R

e

O OHFrHrOOOHFK O

H RO R R FHOOOHR =

R R ORFEFRFRFRFRFROOMN

For each output, minimise
equations with a Karnaugh
map...

seg, = in[3] + in[1].in[3] +
in[0].in[2] + in[2].in[0]

...and draw schematic:
b3,b2,b1,b0

seg_a

20/30

MHV201: Combinatorial logic in Verilog

Ha! Verilog makes this much easier.

The language describes wires, registers (later) and the connections
between them.

m Modular hierarchy: define something then instantiate it N
times

m Performs logic minimisation
m Can infer Xilinx primitives (e.g. multiply)

m Used for both hardware description (“RTL") and test
harness/general programming language (“behavioural
Verilog")

21/30

Verilog: 7-segment decoder

See sources/bcd_to_7seg.v, and simulate it with test harness
tb/tb_7Tseg.v

MHV201: Sequential logic (state machines)
On a (usually) rising edge of the system clock, a flip-flop can grab
its inputs and hold them until told to do it again.

A simple counter can be made by combining an incrementer
(combinatorial) with flipflops, in a loop:

When En=1,
Out = 0000, 0001, 0010, 0011 ... 1110, 1111, 0000

D Q Out
|— En
J CLK

0001

This is a state machine; it goes through a number of states with
well-defined transitions between them.

23 /30

2011-05-30

FPGAs for bits & giggles

LMHVZOl: Sequential logic (state machines)

1. A flipflop has an enable input. When the enable input goes to 1, the
flip flop will LATER latch its input at the next clock edge. (Not at
the enable edge!) When it's 0, the flip flop holds its output
indefinitely.

2. Haven't said much about the clock so far, but the most common
design style is “synchronous”, where every change of flip flop state
is referenced to a common global clock signal.

Verilog: Count to ten

See sources/counter.v, and resulting GTKWave!

25 /30

Build a counter thingy

We can put the two together to make the S3 board count to 100,
ZOMGZ!

To make it more interesting (!), we'll have two counters for units
& tens, and a carry between them.

Other features:

m The 7-segment LED displays are multiplexed on the S3 board,
so we have to alternate between digits quickly.

m Debounce a button input, to count just once when it's
pressed.

26 /30

Counter thingy

T—o/o— de-

bouncer

BCD[3:0
counter [P0 7seq
En
carry out
BCD[3:0] 7seg
< - counter decoder [

ol

27/30

2011-05-30

Counter thingy

FPGAs for bits & giggles

LCounter thingy

1. Clock/reset are not shown on the diagram

2. Button input is all over the place; the debouncer creates a pulse one
clock wide when the button is pressed, enabling the counters

3. When the bottom counter gets to 9, its 'carry out’ output goes to 1
signalling that next time it's enabled & clocked it will roll over.

4. If the set of counters is enabled and carryout is present, the upper
counter is enabled to 'catch’ the roll-over from the bottom counter.

5. The LED displays are driven by simply switching the output between
digits 0 and 1 (whilst enabling digit 0 or 1) fairly quickly. POV.

Counter thingy (2)

See sources/top_level.v and simulation with
tb/tb_toplevel.v

Then, we can compile with ISE and download via JTAG to the
board. Then enjoy the new toy.

29/30

Links

Iverilog simulator: http://iverilog.icarus.com/

GTKWave viewer for sim traces:
http://gtkwave.sourceforge.net/

Xilinx s/w (free reg. required):
http://www.xilinx.com/support/download/index.htm

Opencores, “sourceforge for hardware”:
http://opencores.org/

FPGA arcade machine builds: http://fpgaarcade.com/
Projects, tutorials: http://fpga4fun.com/

30/30

http://iverilog.icarus.com/
http://gtkwave.sourceforge.net/
http://www.xilinx.com/support/download/index.htm
http://opencores.org/
http://fpgaarcade.com/
http://fpga4fun.com/

